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OVERVIEW
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Revised focus on EEMS for FY18 

• Project start date: 10/2017

• Project end date: 9/2018

• Percent complete: ~75%

• Difficulty in sourcing accurate and 

traceable real-world data

• Rapid evolution of CAV technologies

• Constant advances in technology 

drive unexpected consequences for 

CAVs

Timeline

Budget

Highlighted Barriers

• Argonne and DOE Vehicle 
Modeling & Controls PIs

• DOE-SMART consortium 
researchers

• Illinois Institute of Technology
• HPC-Big Data researchers

Partners
• FY17 Funds - $2,000k 

Previous focus on vehicle 
technology evaluation

• FY18 Funds – $1,000k
100% DOE Funds



RELEVANCE - Fundamental Disruption is Occurring in 
Transportation
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Supporting DOE’s research within the expanded context of 

vehicle connectivity and automation
• Building upon existing experimental expertise & best-practices

• Providing tractable and robust laboratory data (when applicable)

• Overlaying state-of-the-art vehicle technologies in a CAV context

• Expanding what is possible within an experimental context

DOE Energy Efficient Mobility System (EEMS) Strategic Goals



APPROACH – FOUR OVERLAPPING RESEARCH THRUSTS
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Laboratory Testing

Targeted On-Road & Track 

Testing

Collect Realistic, On-road Behavior

CAVs Enabled Awareness and 

Sensing Opportunities

Hardware 

Focused 

Research



APPROACH
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High-fidelity data regardless of environment:
• Vehicle-based messages from CAN/diagnostics

• Decoded messages for ACC/related systems

• Cameras (up to 8 time sync’d)

• Direct axle torque measurement

• GPS data @ 5Hz (std.) to 20Hz (supplemental hardware)

• Direct in-line fuel measurement

• Man-in-the-middle capability for further experimentation



FY18 MILESTONES AND PROJECT OVERVIEW

Q1 Q2 Q3 Q4

On-road ACC 

Characterization

Analysis and 

Methodology 

Refinement

ACC On-road FE Benefits 

Dynamometer Testing

On-road Data Collection

Track Experiments
Road-

Load POC

Expanded Sensing Opportunities

Robot Driver

CAV Dyno Environment Emulation and Experimentation

MiM Override

Prelim. ACC Impacts

Testing: Multi-car road-load 

measurements vs following 

distance and speed

ACC+ Impacts

Prelim. Eco-Driving

CAV Vehicle/Sensor Testbed



Accomplishments: Energy-Centric CAV Laboratory
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Three broad categories of “energy-intelligent” behaviors
1) Location Awareness 2) V2X Communication and coordination 3) In-vehicle technologies

Distance-based Road Profiles

Free-running 

Baseline Road-

load Simulation

Dynamic Road Load

(i.e. aero from platooning)

Emulated “Driver” and Controls

1) Processed Cycles – human driver
+ Fast, historical crossover

- Trace following versus “driving”

2) Robot driver adapted for CAVs 
+ Adaptable to non-CAVs vehicles

+ Very repeatable control inputs

? Subject to vehicle pedal mapping/dynamics

3) Generalized Man-in-the-Middle 
+ Override traction controls directly

+ Override other controls (when possible)

+ Intercept and modify specific signals (lead car)

Emulated “Tractive” Environment

Flexible 

“Perception” Layer

“Environmental”  

Emulation



Accomplishments: Energy-Centric CAV Laboratory –
Robot Driver Adaptations: Eco-Launch and ACC

8

Repeatable Eco-Approach/Launch Trajectory

Vehicle’s ACC was emulated with robotic controls (simulated lead vehicle and gap)



Accomplishments: Tractive Load Measurement during 
Vehicle Platooning - Proof of Concept
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1) Fixed Distance 2) Dynamic Varying Distance

Fixed Distance Results (6.5-7m) Preliminary Varying Distance Results

Axle torque sensors can directly measure road-load differences during following 



Accomplishments: Simplified ACC System 
Characterization from On-Road Data Collection
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Prius Prime PHEV

Honda Accord PHEV

[1]

[1] Milanés, Vicente, and Steven E. Shladover. "Modeling cooperative and 

autonomous adaptive cruise control dynamic responses using experimental 

data." Transportation Research Part C: Emerging Technologies 48 (2014): 

285-300.



Accomplishments: Highlighted Dynamometer Results -
ACC Conventional Vehicle Impacts for “Highway” Driving
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44% 44%

• Results vary significantly with cycle

• FE changes do not necessarily mirror 

tractive energy changes

• ACC cycles show fewer shifts 
(Taurus=62%, F-150=56% for RW-Hwy Cycle)

• ACC operation shows expanded top-

gear utilization (26-29% for RW_Hwy)

• Aggregate engine usage similar, but 

fewer excursions with ACC 

HFET

RW_Hwy



Accomplishments: Highlighted Dynamometer Results -
Hybrid vs. Conventional Vehicle Impacts
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Prius Prime: Fuel Rate 

Accord PHEV: Fuel Rate 

• Both HEVs show a 

significant decrease in 

regen. braking energy 
(38% Prius, 49% Accord)

• Accord shows a significant 

increase in EV operation

• Prius shows slight increase 

in EV operation 

Differences in ACC benefit for selected 

HEVs is a mix of control and architecture 



Accomplishments: Preliminary On-Road ACC Analysis and 
High Fidelity Data Collection (collection on-going)
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Arterial Arterial Loop

Short Interstate Extended Interstate

Highlighted EB Extended Interstate Trips 

(mix of day/time)

For the highlighted ACC runs

• 65-86% Utilization

• ~16% FE Variation



Accomplishments: CAVs Enabled Awareness Opportunities

14

• Using just a radar system 

combined with GPS, many 

interesting opportunities arise

Extended Interstate

Supplemental Vehicle Speeds 

(similar to GPS probe data)

Can Vehicle Radar Estimate Density?

(data collection/analysis on-going)

Motionless Objects Easy to Detect with Radar

(fuse with imaging to detect object – on-going)



Partners / Collaborators

15

DOE SMART - National Laboratory Partners:

• Primary Participants: ORNL, ANL, INL, LBNL, NRELC

• Coordination with CAVs and other DOE SMART Mobility pillars 
where/when applicable: AFI, CAVs, MDS, US

University Partners:

• Illinois Institute of Technology

DOE HPC-BigData for Mobility Design and Planning

• ANL, LBNL, ORNL, PNNL 
(not primary data set, but hopefully provide supporting data as needed)

Argonne Vehicle and Mobility Modeling:

• Data & validation support for Autonomie, RoadRunner, SV-Trip, …



Highlighted Future Research
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Laboratory Testing
• Continued refinements/expansion of the emulation layers 

(perception and environment)

• Tighter integration within DOE M+S toolchain 

(Autonomie, RoadRunner, …)

• Evaluation of higher-level automation/coordination strategies

On-Road Testing
• Expanded data collection scope 

(more vehicles, more locations, more technologies)

Targeted On-Road & Track Testing
• Multi-vehicle/mixed-type platoon road-load estimation

• CACC and related strategy impacts for HEVs and BEVs

CAVs Enabled Awareness and Sensing Opportunities
• Opportunities with L3-L4 sensors (i.e. LIDAR, multi camera/radar, etc.)

• Cyber-security implications of advanced sensing and connectivity within 

the larger EEMS operational environment



Summary
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Relevance
• Disruption in transportation will transform how and what DOE 

instruments, tests, and evaluates to provide insights and support 

modeling efforts

Approach
• 4 core hardware focused research thrusts (with interactions across)

• Focus on high-fidelity data across all testing environments

Highlighted Accomplishments
• Foundational layer of an energy-centric CAVs laboratory

o Robot driver provides a flexible and portable interface for evaluation of 

CAVs driving behaviors

• Modifying existing instrumentation practices may provide critical 

CAVs data for modeling and validation

• Dynamometer testing of even basic CAV features highlights a range 

of interesting trends and opportunities for further analysis

• Connectivity combined with location-awareness and emerging vehicle 

sensing opens a wide range of new possibilities
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Methodology Considerations: 
On-Road Data to Fit Simplified ACC Behavior



Methodology Considerations: 
Simplified ACC Fit Driven by Data Collected

Prius Prime (gap <40m)

Accord PHEV

Accord PHEV (gap <40m)

Prius Prime

A more formalized methodology (or alternative testing methodology) would 

improve some of these common issues…


